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Abstract

Recently, motion averaging has been introduced as an ef-
fective means to solve multi-view registration problem. This
approach utilizes the Lie-algebras to implement the averag-
ing of many relative motions, each of which corresponds
to the registration result of the scan pair involved in multi-
view registration. Accordingly, a key question is how to
obtain accurate registration between two partially overlap-
ping scans. This paper presents a method to estimate the
overlapping percentage between each scan pair involved in
multi-view registration. What’s more, it applies the trimmed
iterative closest point (TrICP) algorithm to obtain accurate
relative motions for the scan pairs including high overlap-
ping percentage. Besides, it introduces the parallel compu-
tation to increase the efficiency of multi-view registration.
Experimental results carried out with public data sets illus-
trate its superiority over previous approaches.

1. Introduction

Multi-view registration is a fundamental and difficult is-
sue in computer vision due to its wide application in 3D
model reconstruction. The development of scanning tech-
nology makes it possible to generate accurate and dense
range scans of real objects or scenarios. As a scenario or
object cannot be scanned in its entirety from a single view-
point, it is required to acquire range scans from multiple
viewpoints for covering the entire object or scenario. Ac-
cordingly, each range scan has its own reference frame and
they should be registered into a co-ordinate system and turn
to be an integrated model. Thus, multi-view registration is
the prerequisite for model reconstruction.

For the registration problem, the most popular solution
is the iterative closest point (ICP) algorithm [3], which can
achieve the rigid registration for its good accuracy and fast
speed. However, this basic approach can only obtain good
registration of absolutely overlapping scans. Consequently,
Chetverikov et al. [5] proposed the trimmed ICP (TrICP)
algorithm, which introduces an overlapping parameter into

a least-square (LS) function to automatically discard out-
liers and can achieve accurate registration of partially over-
lapping rang scans. Since the original TrICP algorithm is
time-consuming, Phillips et al. [10] presented an improved
TrICP algorithm with much faster speed. Although these
approaches may obtain good registration results, they are
widely known to be susceptible to local minima. To obtain
the desired global minimum, genetic algorithm (GA) [9, 15]
and the particle filter [11] had been adopted to search opti-
mal solution for registration problem.

Compared with pair-wise registration problem, multi-
view registration is somewhat more difficult due to its
huge amount of registration parameters. In [4], Chen and
Medioni proposed the primary approach for multi-view reg-
istration. It repeatedly registers two scans and integrates
them into one scan until all the scans are integrated into
the whole model. However, this approach can suffer from
the problem that errors accumulate in each individual regis-
tration step and can lead to poor integration as the model
grows. Therefore, Bergevin [2] proposed an improved
multi-view registration approach, which can simultaneously
consider all the scans and solve the multi-view registration
problem by the ICP algorithm. For one point of each scan,
this approach should establish the correspondence to each
other scans, so it is time-consuming. Subsequently, the im-
proved method is proposed based on a segmentation of the
sampled points in an optimized set of z-buffers [1]. This
multi-z-buffer technique provides a 3D space partitioning
which greatly accelerates the establishment of the point-to-
point correspondence between overlapping surfaces. How-
ever, this approach is difficult to deal with non-overlapping
regions due to the adoption of the ICP algorithm. Besides,
the multi-view registration problem can also be viewed as
the optimization over the graph of adjacent scans. These
approaches [12, 13] cast the multi-view registration prob-
lem into a diffusion of rigid transformations over the graph
of adjacent scans. They only transfer the registration errors
between coordinate frames but do not update the correspon-
dences through registration process. Moreover, Fantoni [6]
et al. proposed a completely automatic approach for regis-
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tration of multiple range scans by extracting and describing
the key-points from scan data. However, it is difficult to
extract the key-points from rang scans without any extra in-
formation.

Recently, Govindu and Pooja [7] proposed an extension
of the ICP algorithm that simultaneously registers multiple
3D scans. As the ICP algorithm fails to exploit the redun-
dant information available in multiple scans, this approach
exploits the information redundancy in a set of range scans
by using the averaging of relative motions. Although this
approach is very effective, its accuracy should be further im-
proved due to the adoption of ICP algorithm for relative mo-
tions estimation between partially overlapping scans. More
recently, Zhu et al. [14] proposed a coarse-to-fine approach
for multi-view registration. In this approach, each scan
should be sequentially registered to a coarse model recon-
structed by other registered scans. By applying the TrICP
algorithm, it can obtain good multi-view registration results
for each scan, which can then be immediately utilized to re-
fine the coarse model for registration of other scans. Since
the TrICP algorithm is applied to registration, its accuracy
is satisfactory, yet it may fail into local minima due to the
poor initial parameters.

Accordingly, this paper extends the approach presented
in [7] and proposes some improved techniques for multi-
view registration by motion averaging algorithm. The main
differences between the previous work [7] and this one are
described as follows: (1) It presents a method to estimate
the overlapping percentage between scan pair involved in
multi-view registration. (2) For the scan pair containing
high overlapping percentage, the TrICP algorithm is applied
to calculate the accurate transformation between two scans.
(3) Parallel computation is introduced to reduce the runtime
of the proposed approach. All these three technique can im-
prove the performance of multi-view registration. The first
technique can increase the robustness of multi-view regis-
tration, the second technique can lead to accurate multi-
view registration and the third technique can reduce the run-
time of multi-view registration.

The remainder of this paper is organized as follows. In
Section 2, the pair-wise registration algorithm is briefly re-
viewed. Section 3 presents the proposed approach for regis-
tration of multi-view registration. Following that is section
4, in which the proposed approach is tested and evaluated on
some public data sets. Finally, some conclusions are drawn
in Section 5.

2. Pair-wise Registration

In general, the scan pair involved in multi-view regis-
tration are partially overlapping or even non-overlapping.
Accordingly, the application of the original ICP algorithm
is unable to obtain accurate registration results. Suppose
there are two partially overlapping range scans, a data shape

𝑃
Δ
= {𝑝𝑎}𝑁𝑝

𝑎=1 and a model shape 𝑄
Δ
= {𝑞⃗𝑏}𝑁𝑞

𝑏=1. Denote 𝜉,
R ∈ ℝ

3×3, 𝑡⃗ ∈ ℝ
3 as the overlapping percentage, 3D ro-

tation matrix and translation vector, respectively. The goal
of partially overlapping registration is to find the optimal
transformation (R, 𝑡⃗) with which 𝑃 is registered to be in
the best alignment with 𝑄. This problem can be formulated
as follows:

min
𝜉,R,⃗𝑡

(
1

∣𝑃𝜉∣𝜉1+𝜆

∑
𝑝𝑎∈𝑃𝜉

∥∥R𝑝𝑎 + 𝑡⃗− 𝑞⃗𝑐(𝑎)
∥∥2
2

)

s.t. R𝑇R=I3, det(R) = 1
𝜉 ∈ [𝜉min, 1], 𝑃𝜉 ⊆ 𝑃, ∣𝑃𝜉∣ = 𝜉 ∣𝑃 ∣

(1)

where 𝑞⃗𝑐(𝑎) denotes the correspondence of the 𝑝𝑎 in model
shape, 𝜆 is a preset parameter, ∣⋅∣ denotes the cardinality of
a set and 𝑃𝜉 represents the overlapping part of data shape to
model shape.

Actually, Eq. (1) can be solved by the trimmed ICP algo-
rithm, which achieves partially overlapping registration in
the manner that the ICP algorithm does by iterations. Given
the initial transformation (R0, 𝑡⃗0) , three steps are included
in each iteration:

(1) Based on the previous transformation (R𝑘−1, 𝑡⃗𝑘−1) ,
assign the correspondence between two scans:

𝑐𝑘(𝑎) = argmin
𝑏∈{1,2,..,𝑁𝑞}

∥∥R𝑘−1𝑝𝑎 + 𝑡⃗𝑘−1 − 𝑞⃗𝑏
∥∥
2

(2)

(2) Update the current overlapping percentage 𝜉𝑘 and its
corresponding subset 𝑃𝜉𝑘 :

(𝜉𝑘, 𝑃𝜉𝑘) = argmin
𝜉min<𝜉≤1

∑
𝑝𝑎∈𝑃𝜉

∥∥R𝑘−1𝑝𝑎 + 𝑡⃗𝑘−1 − 𝑞⃗𝑐𝑘(𝑎)
∥∥2
2

∣𝑃𝜉∣ 𝜉1+𝜆

(3)
(3) Calculate the 𝑘th transformation:

(R𝑘, 𝑡⃗𝑘) = argmin
𝜉,R,⃗𝑡

∑
𝑝𝑎∈𝑃𝜉𝑘

∥∥R𝑝𝑎 + 𝑡⃗− 𝑞⃗𝑐𝑘(𝑎)
∥∥2
2 (4)

Obviously, the optimal transformation can be obtained
by repeating these three steps until some convergence cri-
teria are satisfied. To achieve robust registration, the over-
lapping percentage 𝜉 should be larger than 𝜉𝑚𝑖𝑛. Usually,
𝜉min = 0.35 can give a guarantee of good registration in
many practical applications.

3. Registration of Multi-view Range Scans

According to [7], the motion for scans registration has
the form:

M =

[
R 𝑡⃗
O 1

]
(5)

where M ∈ 𝑆𝐸(3) , R ∈ 𝑆𝑂(3) and O = [0, 0, 0]. Gen-
erally, there are two kinds of motions involved in the multi-
view registration: the global motion and the relative motion,
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Figure 1. The set of range scans involved in multi-view registra-
tion, where M𝑖𝑗 indicates the relative motion from scan 𝑗 to scan
𝑖 and M𝑔𝑙𝑜𝑏𝑎𝑙 = {I,M2, ... ,M𝑁} denotes the global motion
being estimated.

and their relationship can be depicted in Fig. 1. Define M𝑖

as the motion from 𝑖 th scan’s coordinate to the reference
frame. Without lose of generality, the coordinate of the first
scan can be set as the reference frame. Suppose there are 𝑁
range scans, the goal of multi-view registration is to obtain
the accurate global motions M𝑔𝑙𝑜𝑏𝑎𝑙 = {I,M2, ... ,M𝑁},
and the integrated global model can be denoted as:

𝑃𝑔𝑙𝑜𝑏𝑎𝑙 = {𝑃1, M2 ⊕ 𝑃2, ... , M𝑁 ⊕ 𝑃𝑁} (6)

where M𝑖 ⊕ 𝑃𝑖
Δ
= {R𝑖𝑝𝑎 + 𝑡⃗𝑖}𝑁𝑖

𝑎=1.
Fig. 2 displays the general steps of multi-view registra-

tion. As Fig. 2 illustrates, the first step of multi-view reg-
istration is to obtain the initial global motions. Given the
results of sequential registration {M𝑖−1,𝑖}𝑁𝑖=2 for the ad-
jacent scan pairs, the initial global motion M0

𝑔𝑙𝑜𝑏𝑎𝑙 can be
calculated as follows:

M0
𝑖 = M0

𝑖−1M𝑖−1,𝑖 (7)

3.1. Recovery of relative motions

Before the implementation of pair-wise registration, the
initial relative motion of one scan pair should be recovered
and viewed as the initial parameters for the TrICP algo-
rithm.

Given the initial global motion M0
𝑔𝑙𝑜𝑏𝑎𝑙, it is easy to re-

cover the initial motion for pair-wise registration as follows:

M0
𝑖𝑗 = (M0

𝑖 )
−1M0

𝑗 (8)

where the 𝑖th scan denotes the model shape and the 𝑗th scan
indicates the data shape.

For the scan pair including high overlapping percentage
(𝜉𝑖𝑗 > 𝜉𝑡ℎ𝑟), the TrICP algorithm can be applied to obtain
the registration results M𝑖𝑗 , which can be viewed as the
relative motion for this scan pair.

3.2. Estimation of the overlapping percentage

To obtain robust and accurate relative motion, the TrICP
algorithm can only applied to these scan pairs, which in-
clude high overlapping percentage. Hence, it is necessary

 

Figure 2. Two steps of multi-view registration, different color de-
notes different rang scans. (a) Range scans acquired from differ-
ent viewpoints; (b) The coarse model obtained by initial global
motions; (c) The refine model obtained by multi-view registration.

to estimate the overlapping percentage before applying the
TrICP algorithm.

For each point in the 𝑖 th scan 𝑃𝑖, it can search (𝑁 − 1)
nearest neighbors from each other scans 𝑃𝑗 (𝑗 ∕= 𝑖) involved
in multi-view registration and the distances can be pre-
served for subsequent processing. Based on the preserved
distance, it is easy to sort all the point pairs by their dis-
tances in the ascending order. Each time, a pair of sorted
points can be added to compute the corresponding value of
objective function 𝜓(𝜉) denoted by Eq. (1). By traveling
all the sorted point pairs, it is easy to obtain the minimum
value 𝜓𝑚𝑖𝑛(𝜉), which corresponds the optimal overlapping
percentage 𝜉𝑖. Then, the distance 𝑑𝑖 of the ⌊𝜉𝑖(𝑁 − 1)𝑁𝑖⌋th
point pair can be viewed as threshold, which can be utilized
to decide the overlapping percentage 𝜉𝑖𝑗 between the scan
pair (𝑃𝑖, 𝑃𝑗). For the scan pair (𝑃𝑖, 𝑃𝑗), 𝑁𝑗 point pairs can
be obtained by solving Eq. (2). Suppose there are 𝑁

′
𝑗 point

pairs, whose distance is shorter than the threshold 𝑑𝑖, then
the overlapping percentage of scan 𝑃𝑗 to scan 𝑃𝑖 can be
calculated as follows:

𝜉𝑖𝑗 =
𝑁

′
𝑗

𝑁𝑗
(9)

Given the threshold 𝜉𝑡ℎ𝑟, it is easy to make the decision to
ignore the scan pairs including low overlapping percentage.

3.3. Motion averaging algorithm

After the estimation of overlapping percentage, it can
find several pairs of scans, which have high overlapping
percentage. If there are 𝑛 pairs of scans satisfy the con-
dition 𝜉𝑖𝑗 > 𝜉𝑡ℎ𝑟, then the corresponding relative motions
{M𝑖𝑗1,M𝑖𝑗2, ... ,M𝑖𝑗𝑛} can be acquired by application of
the TrICP algorithm.

According to [7], motion averaging algorithm is an ef-
fective approach to deal with multi-view registration. Given
the initial global motion M0

𝑔𝑙𝑜𝑏𝑎𝑙 and the 𝑛 relative motions
{M𝑖𝑗1,M𝑖𝑗2, ... ,M𝑖𝑗𝑛}, it can achieve multi-view regis-
tration by iterations and obtain the corresponding global
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motions M𝑔𝑙𝑜𝑏𝑎𝑙 = {I,M2, ... ,M𝑁}. In each iteration,
the following five steps are included:

(1) Get the difference between the relative motion M𝑖𝑗

and the initial relative motion M0
𝑖𝑗 obtained from Eq. (8):

ΔM𝑖𝑗 = M0
𝑖M𝑖𝑗(M

0
𝑗 )
−1 (10)

(2) Transform these difference from Lie group M to Lie
algebra m:

Δm𝑖𝑗 = 𝑙𝑜𝑔(ΔM𝑖𝑗) (11)

(3) Averaging the difference in Lie algebra:

Δv𝑖𝑗 = 𝑣𝑒𝑐(Δm𝑖𝑗) (12)

Δℑ = D†ΔV𝑖𝑗 (13)

where Lie algebra m is a skew-symmetric matrix and Δv𝑖𝑗

is a columnwise vector with six elements extracts from
Δm𝑖𝑗 . Besides, D𝑖𝑗 = [ ... ,−I6×6, ... , I6×6, ... ] is a
matrix with 6 rows and 6 × 𝑁 columns, where −I6×6

appears at the (6 × 𝑖) th column and I6×6 appears at the
(6 × 𝑗) th column. ΔV𝑖𝑗 = [Δv𝑖𝑗1,Δv𝑖𝑗2, ...,Δv𝑖𝑗𝑛]

𝑇 ,
D = [D𝑖𝑗1,D𝑖𝑗2, ... ,D𝑖𝑗𝑛]

𝑇 and D† is the pseudo-inverse
of D.

(4) Transform the averaging from Lie algebra to Lie
group and refine the global motion:

Δm𝑘 = 𝑐𝑒𝑣(Δv𝑘) (14)

∀𝑘 ∈ [2, 𝑁 ], M𝑘 = 𝑒Δm𝑘M𝑘 (15)

where Δℑ = [Δv1, ... ,Δv𝑘, ... ,Δv𝑁 ]𝑇 and 𝑐𝑒𝑣(⋅) rep-
resents the recovery of the corresponding Lie algebra matrix
Δm𝑘 from the columnwise vector Δv𝑘.

(5) Set M0
𝑔𝑙𝑜𝑏𝑎𝑙 = M𝑔𝑙𝑜𝑏𝑎𝑙, repeat steps (1) ∼ (4) until

∥Δℑ∥ < 𝜀 , where 𝜀 is a preset constant.

3.4. Algorithm implementation

Given the results of sequential registration {M𝑖−1,𝑖}𝑁𝑖=2

for the adjacent scan pairs, the proposed multi-view regis-
tration approach can be reasonably outlined as follows:

(1) Get the initial global motion M0
𝑔𝑙𝑜𝑏𝑎𝑙 from

{M𝑖−1,𝑖}𝑁𝑖=2 according to Eq. (7);
(2) Based on the proposed EOP (estimation of over-

lapping percentage) method, pick out several scan pairs,
which satisfy 𝜉𝑖𝑗 ⩾ 𝜉𝑡ℎ𝑟; then obtain their relative motions
{M𝑖𝑗1,M𝑖𝑗2, ... ,M𝑖𝑗𝑛} by the application of the TrICP
algorithm;

(3) Utilize motion averaging algorithm to refine the
global motion M𝑔𝑙𝑜𝑏𝑎𝑙 : {I,M2, ... ,M𝑁};

(4) Denote 𝜎 as a small positive number, set
M0

𝑔𝑙𝑜𝑏𝑎𝑙=M𝑔𝑙𝑜𝑏𝑎𝑙 and repeat steps (2) ∼ (3) utill the
number of iteration reaches the maximum value 𝐾 or
( 1
(𝑁−1)

∑𝑛
𝑖=2

∥∥R𝑖 −R0
𝑖

∥∥
𝐹
) ⩽ 𝜎.

Get initial 
global motion

���

���ij1M ij2M ijnM

Motion Averaging

Stop condition 
is satified?

Y

N

Start

End

Find ( )ξ ξ>ij thr

A

B

ξ1j ξ2j ξNj

 

Figure 3. The diagram of the proposed approach, where the frame
A represents the estimation of overlapping percentages and the
frame B denotes the application of TrICP algorithm.

Subsequently, the diagram of the proposed approach can
be displayed in Fig. 3. As shown in Fig. 3, the overlap-
ping percentage of one scan to other scans can be estimated
simultaneously and the application of the TrICP algorithm
to each scan pair is independent. As these two parts are re-
quired to build correspondence among scans, they are time
consuming. Hence, parallel computation can be applied to
reduce the runtime of the proposed approach in multi-core
computers. Since the Matlab software provides the tool for
parallel computation, it is easy to implement the parallel
computation for the proposed approach in Matlab.

4. Experimental Results

To verify its superior performance, the proposed ap-
proach was compared to the motion average ICP algorithm
[7] and the coarse-to-fine TrICP approach [14], which are
abbreviated as MAICP and CFTrICP. Experiments were
tested on three datasets from the Stanford repository [8],
where the Bunny, Dragon and Happy Buddha include 10,
15, 15 range scans, respectively. As each of these three data
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sets contains a huge number of points, the multi-view regis-
tration is time-consuming. In order to save time, the testing
data sets are sampled from the raw data sets with the sam-
pling frequency set to be 8. During experiments, parame-
ters are set as follows: 𝜆 = 2, 𝜉𝑚𝑖𝑛 = 0.35, 𝜉𝑡ℎ𝑟 = 0.5,
𝜀 = 10−3, 𝜎 = 4.5(𝑁 − 1)× 10−4, 𝐾 = 30. All the com-
peted approaches adopted nearest-neighbor search method
based on 𝑘− 𝑑 tree to assign the correspondences and were
implemented in Matlab. Experiments were performed on
a double-Core 3.10GHZ computer with 4 GB of memory
except the experiment of parallel computation.

4.1. Parallel computation

To verify the efficiency of parallel computation, the pro-
posed approach was carried out in two modes: (1) Sequen-
tial computation (SC); (2) Parallel computation (PC). And
it was tested on Stanford Bunny, Dragon and Happy Bud-
dha, respectively. Before experiment, the noise was added
to the initial parameters obtained by Eq. (7). Experiment
was performed on two computers: a double-Core 3.10GHZ
computer with 4 GB of memory and a four-core 3.40GHZ
computer with 16 GB of memory. During experiment, the
runtime of every data set was recorded for each mode. To
eliminate randomness, 50 Monte Carlo (MC) trials were
carried out with respect to three data sets for two modes
of the proposed approach. For comparison of the results be-
tween different computers, the average runtime of sequen-
tial computation can be normalized and the percentage of
average runtime between these two modes is displayed in
Fig. 4.

As shown in Fig. 4, the adoption of parallel computation
can reduce the runtime of the proposed approach for multi-
view registration and its efficiency can be further improved
with the number of cores increased in the computer.

4.2. Efficiency and accuracy

Since all these three approaches require the initial global
motions, it only needs to compare the runtime in multi-view
registration step. For comparison of different approaches,
the objective function presented in [14] is adopted as the
error criterion for accuracy evaluation of multi-view regis-
tration results. During experiment, the same noise is added
to the initial registration parameters obtained by Eq. (7).
Accordingly, three approaches can be applied to register
multi-view range scans. Table 1 records the runtime and
objective function value of the final registration result for
all these competed approaches. To view the results in a
more intuitive way, Fig. 5 displays the registration results
of three data sets for different approaches in the form of
cross-section.

As shown in Table 1 and Fig. 5, the proposed approach
can obtain the most efficient and accurate multi-view reg-
istration result among these competed approaches. Since

 

Bunny Dragon Happy
SC 100% 100% 100%
PC on 2 cores 55.24% 55.65% 54.07%
PC on 4 cores 38.58% 43.27% 39.54%
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Figure 4. The comparison of runtime between the parallel compu-
tation (PC) and the sequential computation(SC).

CFTrICP minimizes the objective function presented in [14]
to achieve multi-view registration, it is reasonable to obtain
accurate results. Compared to MAICP, the proposed ap-
proach improves the registration performance by the three
following techniques: (1) The EOP method is introduced
to roughly estimate the overlapping percentage, which can
help us to discard some scan pairs including low overlap-
ping percentage. (2) Parallel computation is adopted to re-
place the sequential computation. (3) For the scan pair in-
cluding high overlapping percentage, the ICP algorithm is
replaced by the TrICP algorithm to obtain accurate relative
motions. Both the first and second techniques can acceler-
ate the multi-view registration, the third one can improve
the accuracy of the proposed approach. Therefore, the pro-
posed approach has good performance for multi-view reg-
istration on efficiency and accuracy.

4.3. Robustness

To verify the robustness of the proposed approach, all
competed approaches were tested on Stanford Bunny with
varied initial parameters, which can be obtained by adding
the uniform noises to the initial rotation obtained by Eq.
(7). To eliminate randomness, 50 MC trials were carried
out with respect to three noise levels for all competed ap-
proaches. Table 2 depicts the mean value and standard de-
viation of objective function, the mean runtime for these
approaches. To compare the robustness in a more intuitive
way, Fig. 6 displays the objective function value of the reg-
istration results for all competed approaches in each MC
trial.

As shown in Table 2 and Fig. 6, the proposed approach
can obtain the most efficient, accurate and robust registra-
tion results under varied noise levels. To achieve multi-
view registration, CFTrICP should adjust all the registra-
tion parameters simultaneously, which can make it easy to
trap into local minima. Hence, the robustness of CFTrICP
is poor especial for the high noise levels. Since MAICP
adopts the ICP algorithm to calculate relative motions be-
tween the scan pair including non-overlapping regions, it is
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Table 1. Performance comparison among different approaches for different shapes
Bunny Dragon Happy Buddha

Obj T(min) Obj T(min) Obj T(min)
MAICP [7] 0.8533 5.0333 0.5152 4.1986 0.1821 25.6729

CFTrICP [14] 0.7112 2.6530 0.4116 1.9533 0.1376 6.9097
Ours 0.6329 0.9235 0.4095 1.1205 0.1344 3.8964

(a) (c) (e)(d)(b)  

Figure 5. Cross-section of multi-view registration results for three competed approaches. From the first to third rows are Stanford Bunny,
Dragon, and Happy Buddha, respectively. (a) The 3D model obtained by the proposed approach; (b) Cross-section of the initial model; (c)
Cross-section of MAICP; (d) Cross-section of CFTrICP; (e) Cross-Section of our approach.

unable to obtain accurate and robust relative motions, which
can lead to bad multi-view registration. While, the proposed
approach can estimate the overlapping percentage between
each scan pair and apply the TrICP algorithm to calculate
accurate relative motions for the scan pair including high
overlapping percentage. Therefore, it can obtain the most
robust multi-view registration results by further adopting
the motion average method proposed in [7] .

5. Conclusion

This paper proposes the improved techniques for multi-
view registration with motion averaging. By considering
non-overlapping regions, it presents a method for estimation
the overlapping percentage between each scan pair, which

can help us to pick out the scan pairs with high overlap-
ping percentage. For these scan pairs, the TrICP algorithm
can be utilized to obtain accurate relative motions. Subse-
quently, the motion averaging algorithm can be applied to
these relative motions for registration of multi-view range
scans. Since it is time-consuming to estimate the overlap-
ping percentages and apply the TrICP algorithm, the adop-
tion of parallel computation can dramatically reduce the
runtime of multi-view registration. Experimental results
demonstrate that the proposed approach can achieve the reg-
istration for multi-view range scans with good performance
in efficiency, accuracy and robustness.

Although we have achieved good results of rigid registra-
tion of multi-view range scans, there are still many degrees
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Table 2. Performance comparison of three approaches under varied noise levels
[-0.02,0.02]rad [-0.04,0.04]rad [-0.06,0.06]rad
Obj. T(min) Obj. T(min) Obj. T(min)

Mean Std. Mean Mean Std. Mean Mean Std. Mean
MAICP [7] 0.8532 0.0002 5.4050 0.9164 0.4474 5.2097 1.4980 1.6478 5.0499

CFTrICP [14] 0.7127 0.0017 2.0368 0.7651 0.1302 2.3165 0.7915 0.1691 2.8180
Ours 0.6329 0.0002 0.9685 0.6330 0.0003 1.0174 0.6330 0.0003 1.1271
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Figure 6. The objective function value of the registration results
for the competed approaches in each MC trial.

of freedom that could be explored, such as the extension
of this approach to the non-rigid registration of multi-view
range scans.
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