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ABSTRACT

With the ever-increasing number of digitally reconstructed
neurons, computational analytics of 3D neuronal morphology
has become a new avenue to understand neuroanatomical
structures and functional properties. However, traditional
methods cannot well identify and represent neuronal mor-
phology, especially when tackling large-scale and diverse
neuron datasets. In this paper, we propose a deep learning
based framework for the representation of 3D neuron mor-
phology. At first, considering the neuronal tree-structures are
usually very sparse in 3D space, we project each 3D neuron
into 2D images with three angles of view. The projective
strategy can preserve the spatial morphologies from the orig-
inal data. Subsequently, as there are no sufficient annotations
for each neuron, we introduce an unsupervised deep neu-
ral network to automatically learn neuron features from the
projected 2D images. The deep features are then combined
with traditional features for accurate neuron representation.
Experimental results validate the effectiveness of our method
by searching similar samples on a public database including
58, 000 neurons. Moreover, we demonstrate that the tradi-
tional hand-crafted features are complementary with deep
features in the representation of 3D neuron morphology.

Index Terms— Neuron morphology, deep learning, fea-
ture representation, computational neuroanatomy

1. INTRODUCTION

Understanding neuron morphology is a fundamental task to
explore neuronal circuits, functional and physiological prop-
erties. Recent frontiers in neuron tracing and reconstruction
(e.g., BigNeuron [1], NeuroMorpho [2]) have greatly facili-
tate the research of neuron morphology. Increasing number
of neurons are digitally reconstructed and added to the pub-
lic repositories with tens of thousands of neurons [3, 4]. For
each reconstructed neuron, their morphologies are recorded in
a SWC format file including a set of neuron nodes with seg-
ment types, locations, radius, and connections [5]. Accord-
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ingly, these morphological data can bring new opportunities
for neuron mining and knowledge discovery. For example,
finding neuron sharing similar morphologies, correlating neu-
ronal morphologies with functional properties, all these tasks
require methods to identify and represent neuron morphology.

In recent years, neuron morphology has been investigated
based on computational models and machine learning tech-
niques. Scorcioni et al. [6] first developed L-measure tool
for the quantitative measurement of neuromorphology, which
can compute neuroanatomical parameters from 3D recon-
structed neuron data. Costa et al. [7] proposed the concept
of neuromorphological space and identified the most impor-
tant geometrical features in neuron cell, including neuron’s
total length, branch numbers, etc. With these measurement
based features, multiple methods have been proposed for
the analytics of neuron morphology. For example, Wan et
al. [8] developed BlastNeuron for the comparison, retrieval
and clustering of 3D neuron morphology. In BlastNeuron,
they employed L-measure tool and moment invariants as
morphological features for similarity search. Costa et al. [9]
presented NBLAST to measure pairwise neuronal similarity
by considering both position and local geometry, decompos-
ing neurons into short segments. To improve the analytical
efficiency, Mesbah et al. [10] first introduced hashing meth-
ods, i.e., hashing forest, to transform neuron features into
binary codes. More recently, Li et al. [11] proposed feature
hierarchy to group neuronal features into different similarity
levels for more accurate representation and retrieval.

By employing quantitative measurements as neuron fea-
tures, the above methods have achieved many successes
in the research of neuron morphology. However, with the
continuously expanding of neuronal amounts and varieties
in databases, neurons belonging to different categories can
express similar morphologies (indicating small inter-class
variances), while neurons belonging to same categories can
express different morphologies (indicating large intra-class
variances) [12]. Thus, traditional “hand-crafted” features
may not work well in the exploration of large-scale neuron
databases. On the other side, deep learning has become a kind
of advanced techniques for the feature representation in many
fields, such as computer vision, medical image analysis, and
speech recognition [13]. Nevertheless, directly applying deep



3D Neuron Database

Projected Images

...  

Deep Features

Stacked Convolutional Autoencoders Reconstructed Images

Hand-crafted 
Features

CombineL-measure

Fig. 1: Overview of the proposed framework for the feature representation of 3D neuron morphology.

learning in the 3D neuron morphology still faces two major
problems: 1) the tree-structure of neurons are usually very
sparse in 3D space, which are not suitable for training the 3D
neural network; 2) the spatial information of neuron nodes,
i.e., location, radius, and connection, need to be considered
but are hard to embedded in deep models.

To address the above problems, we develop a deep learn-
ing based framework for the feature representation of 3D
neuron morphology. As shown in Fig. 1, to overcome the
tree-structural sparsity, we first transform 3D neurons into 2D
images through orthogonal projection. The spatial informa-
tion of neuron nodes can be greatly preserved by projecting
nodes’ coordinates, radius, and connections in three angles
of view. The computed 2D neuron images are subsequently
set as input to train our unsupervised deep neural network,
i.e., stacked convolutional autoencoders (SCAEs). The net-
work learns to recover the input image by exploring intrinsic
deep feature representation among neuron morphologies.
After training the SCAEs model, our learned deep features
are combined with the traditional hand-crafted features for
comprehensive and accurate representation of neuron mor-
phology. The combined features can be further used for
similarity searching and knowledge discovery.

2. METHODOLOGY

3D Neuron Projection: according to Fig. 1, the first step in
our framework is to project 3D neurons into 2D images. In
general, 3D neuron morphological data are stored in the SWC
format file which includes hundreds to tens of thousands of
nodes. For each node, its spatial information is determined
by the location (i.e., x, y, z coordinates), radius (indicating the
thickness of neuronal dendrite), and connection (i.e., the con-
nectivity with parent nodes). Therefore, unlike previous 3D
deep learning problems which can directly handle the point
sets, we need to consider neuronal nodes and their composed
tree-structures in 3D neuron morphology. Here, we present
a neuron projection strategy which can transform 3D neuron
data into a suitable modality for deep feature representation.

Given a 3D neuron data, we first employ the principal
component analysis (PCA) algorithm to shift and rotate the

neuron into a normalized axis, since some of the original neu-
rons are not oriented properly. Then all the neuronal nodes
are orthogonally projected into three angles of view, i.e., the
x-y, x-z, and y-z plane respectively, based on their coordi-
nates after PCA orientation. The three angles’ projection can
greatly preserve the spatial information. Moreover, consid-
ering the projected image haven’t reflected neuron’s original
tree-structure, we introduce two operations for each node in
images: 1) embedding each node’s radius in the image, where
all pixels within the node’s radius are assigned as 1; 2) each
node is connected to its corresponding parent node, where
all pixels residing on the line segment connecting the two
nodes are assigned to 1. After the above operations, three
grayscale images can be generated from a 3D neuron data.
The grayscale images can preserve the original neuronal spa-
tial information and tree-topological structure as much as pos-
sible, and also transform the 3D neuron data into a usable
modality for deep learning.
Deep Feature Representation: after 3D neuron projection,
we can employ the generated 2D images to train deep neu-
ral network for the neuronal feature representation. In re-
cent years, there are varieties of deep neural networks that
designed for different datasets and tasks. In current neuron
databases, there are no sufficient annotations to identify and
classify each neuron, which only provides coarse brain re-
gions, cell types, etc. Thus only unsupervised deep neural
network can be used. Besides, neuron’s tree-structures, e.g.,
dendrites and bifurcations, should also be considered in the
network. Here, we introduce the stacked convolutional au-
toencoders (SCAEs), which can explore the intrinsic structure
of neurons in an unsupervised manner.

The general structure of SCAEs is illustrated in Fig. 1.
From left to right, the network can be roughly divided into
encoder and decoder two parts. The encoder subnetwork con-
tains 6 convolution layers and 5 maxpooling layers, which
transforms a 256 × 256 grayscale image into a 128 × 4 × 4
tensor which is further embedded into a 2048 dimensional
feature vector via a fully connected layer. The decoder sub-
network is designed for recovering the grayscale image from
the output of encoder network with 1 fully connected, 5 up-
sampling, 6 convolution and 1 deconvolution layers. In ad-



dition, we employ batch normalization and ReLU activation
right after each convolution. We adopt the tanh function to re-
construct the grayscale image for the deconvolution in the last
layer of decoder subnetwork. After training the SCAEs net-
work, the decoder part can be removed. The deep feature of
each input neuron image would be the output of encoder sub-
network, i.e., a 2048 dimensional feature vector.The network
is optimized through SGD algorithm using L1 loss function,

L = ‖x−Decoder(Encoder(x, θe), θd)‖1, (1)

where x is the input 2D neuron image, θe, θd is the parameter
of encoder and decoder subnetwork respectively.
Feature Combination: for a 3D neuron data, its deep fea-
ture can be computed by sequentially combining the three
grayscale image features using the trained SCAEs model. As
the unsupervised deep neural network usually cannot explore
the fine-grained details in image data, our SCAEs may also
not work well in fully representing the 3D neuron morphol-
ogy. Therefore, we propose to combine the deep features
with traditional hand-crafted features for more accurate neu-
ronal representation. For the deep features, we first employ
the PCA algorithm to reduce the dimension from thousands
to tens. This operation can alleviate noise and redundancy
in original deep features and also keep a similar feature size
with the hand-crafted features. For the hand-crafted features,
we compute the quantitative measurements in each 3D neu-
ron through the L-measure tool, including global, branch, and
bifurcation three levels of measurements. Then, we combine
the deep feature with the hand-crafted feature to represent the
3D neuron morphology. Advantages of this feature combina-
tion step will be demonstrated in the experiment.

3. EXPERIMENTS

Experimental Setting: in the experiment, we adopt the Neu-
roMorpho database [3] to validate the performance, which is
the largest collection of publicly accessible 3D neuronal re-
constructions and associated metadata. Particularly, we con-
sider in total 58, 414 valid neurons for feature representation
and evaluation (excluding neurons that cannot be read and
measured by the L-measure tool [6]). In the 3D neuron pro-
jection, we project and normalize each neuron into three im-
ages with the size of 256 × 256. For our SCAEs, we set a
weight decay of 10−4 and momentum of 0.9. The whole neu-
ral networks are trained end-to-end in 60 epochs with an ini-
tial learning rate of 0.01. We randomly select 30, 000 neurons
to train the SCAEs model, i.e., 90, 000 projected images in to-
tal. For the hand-crafted features, we employ the L-measure
tool to extract 38 quantitative measurements, following the
setting with previous articles [8, 9, 11], which have achieved
the best representational performance in several neuron an-
alytical tasks. All experiments are carried out on a desktop
with 1.6GHz processor of twelve cores and 128G RAM.

Table 1: Average precision of four methods under different
number of top similar retrieval results.

top-10 top-20 top-30 top-50
Deep-fea 0.6851 0.5534 0.4729 0.3710
MIPS-fea 0.8396 0.7605 0.6920 0.5982
Hand-fea 0.8586 0.7776 0.7239 0.6407
Comb-fea 0.9130 0.8377 0.7943 0.7337

Validations and Discussions: to evaluate the performance
of neuronal feature representation, we employ the metric of
neuron morphological retrieval, i.e., similarity searching in
a neuron database. Particularly, we compare the performance
of four methods related to neuronal feature representation and
retrieval, including our deep features, our combinational fea-
tures, the above 38 dimensional hand-crafted features [8, 9,
11] and the MIPS based binary codes [11], which are abbrevi-
ated as Deep-fea, Comb-fea, Hand-fea, and MIPS-fea respec-
tively. Hand-fea and MIPS-fea are both the state-of-the-art for
neuronal retrieval. We select the Drosophila Melanogaster’s
projection neurons as queries for which the brain region is the
olfactory antennal lobe, and the cell types are principal cell
and uniglomerular projection (233 such projection neurons in
total, denoted as uPNs). This selection of query neurons is
also consistent with previous articles [8, 9, 11], since uPNs
are the one kind of most fine-grain identified neurons in the
NeuroMorpho database.

Table. 1 presents the average retrieval precision of the four
comparative methods. The average retrieval precision is de-
fined as the average percentage of same class neurons in all
retrieved neurons after evaluating the 233 uPNs. For a query
uPN, the top-10 retrieval precision denotes the percentage of
uPNs in its 10 most similar neurons (except itself) after the
feature comparison with the whole 58, 414 neurons based on
the Euclidean distance. For the Deep-fea, we employ PCA to
compress the original deep feature into 40 dimensions. The
Comb-fea is the combination of Deep-fea and Hand-fea. The
MIPS-fea generates 32 bits of binary codes as neuronal fea-
tures. According to Table. 1, the Comb-fea can achieve the
highest retrieval precision compared with other three meth-
ods. The Deep-fea also achieve reasonable retrieval precision,
which validates that the deep learning based methods are ef-
fective for the feature representation of neuron morphology.
The results are mainly benefited from our designed 3D neuron
projection strategy, which can preserve the tree-topological
structure of 3D neuron morphology in 2D binary images. The
introduced SCAEs model has the ability to explore neuronal
dendrites and bifurcations for more accurate representation.

More importantly, for the results of Comb-fea, we find
that the retrieval performance has a significant improvement
after combining our deep feature with the traditional hand-
crafted feature. As shown in Fig. 1, the left three grayscale
images are projected from the original 3D neuron, while the
right three are the corresponding reconstructed images after



Fig. 2: Four query neurons (red) and their corresponding most
similar neurons (blue) after searching in the NeuroMorpho [3]
database, which illustrate the morphological similarity after
using the proposed feature representation method.

the SCAEs decoder. It can be observed that the reconstructed
images are able to preserve the overall structure from inputs,
while most fine-grained details are lost. These results indi-
cate that our learned deep features are more likely to explore
and represent holistic structures in neuron morphologies. In
contrast, the holistic structures in traditional hand-crafted fea-
tures are represented by several primary measurements, e.g.,
neuron’s total height, length, volume, etc, which can not well
identify and discriminate neurons in large-scale databases.
Therefore, the traditional hand-crafted features and our deep
learning based features are complementary with each other in
the representation of 3D neuron morphology.

In addition, we randomly select four neurons as queries
and provide their most similar neurons after retrieval using
our combined features. The neurons are displayed in Fig. 2
using the Vaa3D software [14], where the reds are queries
and the blues are retrieved neurons. Fig. 2 validates that our
feature representation method can effectively find morpho-
logically similar neurons in large-scale databases. These re-
sults are useful in many neuron analytical tasks. For example,
the similar neurons can be employed for neuron comparison
to further analyze and explore the association of detailed ar-
borization patterns and functional properties [8].

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we attempt to employ deep learning techniques
in tackling the feature representation of 3D neuronal mor-
phology. A generalized framework is proposed based on the
neuronal projection, unsupervised deep neural networks and
feature combination, which achieve superior performance
compared with the state-of-the-art. Nevertheless, there are
several aspects that can be explored to further improve the
performance. For example, in 3D neuron projection, the three
grayscale 2D images are related to each other, since they
are reflections of a common neuron in different view angles.
These relations should be considered and utilized in the deep
neural network. Additionally, our current framework cannot

achieve the fully automatic feature representation. In the fu-
ture, we will study how to embed hand-crafted features in a
deep neural network to compute neuron features end-to-end.
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