In this paper, we propose a novel method to address the challenge of learning deep neural network models in the presence of open-set noisy labels, which include mislabeled samples from out-of-distribution categories. Previous methods relied on the …
In the semi-supervised object detection task, due to the scarcity of labeled data and the diversity and complexity of objects to be detected, the quality of pseudo-labels generated by existing methods for unlabeled data is relatively low, which …